PROPOSED REGULATION OF THE STATE ENVIRONMENTAL COMMISSION

LCB FILE NO. R147-24I

THE FOLLOWING DOCUMENT IS THE INITIAL DRAFT REGULATION PROPOSED

BY THE AGENCY SUBMITTED ON 06/20/2024

PETITION P2024-14 - 06/17/2024 (CARSON RIVER)

PROPOSED PERMANENT REGULATION OF THE NEVADA STATE ENVIRONMENTAL COMMISSION

AUTHORITY: §§1-318, NRS 445A.425 and 445A.520.

A PERMANENT REGULATION relating to water quality; making various changes in provisions that establish standards for water quality; and providing other matters properly relating thereto.

<u>PETITION 2024-14</u> Changes to the Nevada Administrative Code revising the Nevada water quality regulations to change the previous beneficial use subcategory for segments of the Carson River in Carson Valley from "cold-water species" to "warm-water species" on NAC 445A.1792 - NAC 445A.1864, Carson Region. The proposed regulation will also designate previously undesignated waters considered tributary to the affected segments of the Carson River to ensure adequate protection of beneficial uses.

Proposed Revisions:

The proposed updates to the NAC are shown below with *additions in blue bold-italics* text and omissions shown in red [strikethrough] text, bound by brackets:

Section 1. NAC 445A.1796 is hereby amended to read as follows:

Standards for Surface Water Quality

NAC 445A.1796 Carson Region: Carson River, West Fork at the state line. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as the West Fork of the Carson River at the California-Nevada state line. This segment of the West Fork of the Carson River is located in Douglas County.

STANDARDS OF WATER QUALITY Carson River, West Fork at the state line

	REQUIREM						Benef	ficial Us	esa			
PARAMET ER	ENTS TO MAINTAIN EXISTING HIGHER QUALITY	WATER QUALITY CRITERIA TO PROTECT BENEFICIAL USES	ock	on	Aqua tic	act		pal	ial		Aesthe tic	Mar sh
Beneficial Us			X	X	X	X	X	X	X	X		
Aquatic Life	Species of Con		[Rainbo	ow trou	t and t	rown	trout]-Na	tive colo	d-water	specie	es .	
Temperature - $^{\circ}$ C ΔT^{b} - $^{\circ}$ C	$\Delta T = 0$	S.V. Nov- May ≤ 13 S.V. Jun ≤ 17 S.V. Jul ≤ 21 S.V. Aug- ≤ 22 Oct ≤ 2 ΔT			*							
pH – SU	S.V. 7.4 - 8.4	S.V. 6.5 - 9.0 ΔpH±0.5			*							
Dissolved Oxygen - mg/L		S.V. Nov- May ≥ 6.0 S.V. Jun-≥ 5.0 Oct			*							
Total Phosp horus (as P) - mg/L	≤ 0.01 A-Avg. 6 S.V. ≤ 0.03	A-Avg. \le 0.10			*	*						
Total Nitrogen (as N) - mg/L	≤ A-Avg. 0.4 S.V. ≤ 0.5				*	*						
Nitrate (as N) - mg/L		S.V. ≤ 10						*				
Nitrite (as N) - mg/L		$S.V. \leq 0.06$			*							
Total Ammonia (as N) - mg/L		С			*							
Total Suspe nded Solids - mg/L	A-Avg. ≤ 15	S.V. ≤ 25			*							
Turbidity – NTU	$\begin{array}{c} A\text{-}Avg. \leq 3 \\ S.V. \leq 5 \end{array}$	S.V.≤10			*							
Color - PCU	d	S.V. ≤ 75						*				
Total Dissolved Solids - mg/L	A-Avg. ≤ 70 S.V. ≤ 95	A-Avg. ≤ 500						*				
Chloride - mg/L	A-Avg. ≤ 3 S.V. ≤ 5	S.V. ≤ 250						*				
Sulfate - mg/L	$S.V. \leq 4$	S.V. ≤ 250						*				
Sodium – SAR	A-Avg. ≤ 1	A-Avg. ≤ 8		*								

	REQUIREM						Benef	ficial Us	es ^a		
PARAMET ER	ENTS TO MAINTAIN EXISTING HIGHER QUALITY	ENGLEGI	_		. ^		Noncon tact				Mar sh
Alkalinity (as CaCO ₃) - mg/L		S.V.≥ 20			*						
E. coli - cfu/100 mL ^e		G.M. ≤ 126 S.V. ≤ 410				*					
Fecal Coliform - No./100 mL	A.G.M. ≤ 105	S.V. ≤ 1,000		*							
Toxic Materials		f									

^{* =} The most restrictive beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.
- Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in NAC 445A.118.
- d Increase in color must not be more than 10 PCU above natural conditions.
- ^e The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

Section 2. Chapter 445A of NAC is hereby amended by adding thereto the provisions set forth in this section:

NAC 445A.#### Carson Region: Carson River, West Fork at Brockliss Slough Diversion. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as the West Fork of the Carson River from the California-Nevada state line to the Brockliss Slough Diversion. This segment of the West Fork of the Carson River is located in Douglas County.

STANDARDS OF WATER QUALITY Carson River, West Fork at the Brockliss Slough Diversion

	REQUIREM						Benej	ficial Us	ses ^a			
PARAMET ER	MAINTAIN	WATER QUALITY CRITERIA TO PROTECT BENEFICIAL USES			. *		Noncon tact					Mar sh
Beneficial U s	ses		X	X	X	\boldsymbol{X}	X	X	X	X		
Aquatic Life	Species of Con	icern	Native	cold-wa	iter sp	ecies						

	REQUIREM					Bene	ficial Us	esa		
PARAMET ER	ENTS TO MAINTAIN EXISTING HIGHER QUALITY	WATER QUALITY CRITERIA TO PROTECT BENEFICIAL USES				Noncon	Munici	Indust		Mar sh
Temperatur $e - \mathcal{C}$	$\Delta T = 0$	S.V. Nov- $May \le 13$ S.V. Jun ≤ 17 S.V. Jul ≤ 21 S.V. Aug- ≤ 22 Oct ≤ 2		*						
pH – SU	S.V. 7.4 - 8.4	ΔT S.V. 6.5 - 9.0 ΔpH±0.5		*						
Dissolved Oxygen - mg/L		S.V. Nov- May ≥ 6.0 S.V. Jun-≥ 5.0 Oct		*						
Total Phosp horus (as P) - mg/L	≤ 0.01 A-Avg. 6 S.V. ≤ 0.03 3	<i>A-Avg.</i> ≤ <i>0.10</i>		*	*					
Total Nitrogen (as N) - mg/L	≤ A-Avg. 0.4 S. V. ≤ 0.5			*	*					
Nitrate (as N) - mg/L		S.V. ≤ 10					*			
Nitrite (as N) - mg/L		<i>S.V.</i> ≤ 0.06		*						
Total Ammonia (as N) - mg/L		c		*						
Total Suspe nded Solids - mg/L	<i>A-Avg</i> . ≤ 15	S.V. ≤ 25		*						
Turbidity – NTU	$A-Avg. \le 3$ $S. V. \le 5$	S.V. ≤ 10		*						
Color - PCU	d	S. V. ≤ 75					*			
Total Dissolved Solids - mg/L	$A-Avg. \le 70$ $S. V. \le 95$	<i>A-Avg.</i> ≤ 500					*			
Chloride - mg/L	$A-Avg. \le 3$ $S. V. \le 5$	S.V. ≤ 250					*			
Sulfate - mg/L	<i>S.V.</i> ≤ <i>4</i>	S.V. ≤ 250					*			
Sodium – SAR	<i>A-Avg.</i> ≤ <i>1</i>	A - A v g . ≤ 8	*							
Alkalinity (as CaCO3) - mg/L		<i>S.V.</i> ≥ 20		*						

	REQUIREM					Benej	ficial Us	esa		
PARAMET ER	MAINIAIN	WATER QUALITY CRITERIA TO PROTECT BENEFICIAL USES	_	. •		Noncon tact			_	Mar sh
E. coli - cfu/100 mL ^e		$G.M. \le 126$ $S.V. \le 410$			*					
Fecal Coliform - No./100 mL	<i>A.G.M.</i> ≤ 105	<i>S.V.</i> ≤ 1,000	*							
Toxic Materials		f								

^{* =} The most restrictive beneficial use.

- a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.
- b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in <u>NAC 445A,118</u>.
- d Increase in color must not be more than 10 PCU above natural conditions.
- ^e The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- f The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R093-13, 12-23-2013; R102-16 & R109-16, 12-19-2017)

Section 3. NAC 445A.1804 is hereby amended to read as follows:

NAC 445A.1804 Carson Region: Carson River, East Fork at U.S. Highway 395 south of Gardnerville. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as the East Fork of the Carson River from the California-Nevada state line to the Riverview Mobile Home Park at U.S. Highway 395 south of Gardnerville, except for the length of the river within the exterior borders of the Washoe Indian Reservation. This segment of the East Fork of the Carson River is located in Douglas County.

STANDARDS OF WATER QUALITY Carson River, East Fork at U.S. Highway 395 south of Gardnerville

	REQUIREME	WATER					Bene	ficial Use	s ^a				
	NTS	QUALITY											
DADAMET	TO	CRITERIA											
PARAMET ER	MAINTAIN	TO	Livesto	Irrigati	Aquat	Conta	Noncont	Municip	Industri	Wildli	Aesthet	Enhan	Mars
EK	EXISTING	PROTECT		•	. ^				1	C		ce	h
	HIGHER	BENEFICI											
	QUALITY	AL USES											
Beneficial U	ses		X	X	X	X	X	X	X	X			

	REQUIREME						Bene	ficial Use	es ^a				
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY Species of Conc	PROTECT BENEFICI AL USES	ck	on	ic	ct	Noncont act	al	al	fe	Aesthet ic		Mars h
Aquatic Life	Species of Conc	S. V.	[Kamoo	w trout i	ina oro	wn trot	n.j Native	warm-w	ater spec	cies	ĺ	1	
Temperatur e - °C ΔT ^b - °C	$\Delta T = 0$				*								
pH - SU	S.V. 7.5 -	$S.V. \frac{6.5}{9.0} - \Delta pH \pm 0.5$			*								
Dissolved Oxygen - mg/L		S.V. Nov- May \geq 6.0 S.V. \geq 5.0 Jun- Oct			*								
Total Phosphorus (as P) - mg/L		A-≤ Avg. 0.10			*	*							
Total Nitrogen (as N) - mg/L	A-Avg. ≤ 0.4 S.V. ≤ 0.5				*	*							
Nitrate (as N) - mg/L		S.V. ≤ 10						*					
Nitrite (as N) - mg/L		$S.V. \frac{\leq}{0.06}$			*								
Total Ammonia (as N) - mg/L		С			*								
Total Suspended Solids - mg/L		S.V. ≤ 80			*								
Turbidity - NTU		S.V. ≤ 10			*								
Color - PCU	d	S.V. ≤ 75			ļ			*					
Total Dissolved Solids - mg/L	≤ A-Avg. 120 S.V.≤ 175	A-≤ Avg. 500						*					
Chloride - mg/L	$\begin{array}{c} A\text{-}Avg. \leq 6 \\ S.V. \leq 10 \end{array}$	S.V.						*					

	REQUIREME	WATER					Bene	ficial Use	es ^a		
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto ck	_	. ^		Noncont act	_		Aesthet ic	Mars h
		≤ 250									
Sulfate - mg/L		S.V. ≤ 250						*		 	
Sodium - SAR	A -Avg. ≤ 2	$\frac{A}{Avg} \le 8$		*							
Alkalinity (as CaCO ₃) - mg/L		S.V.≥20			*						
E. coli - cfu/100 mL ^e		≤ G.M. 126 S.V.≤ 410				*					
Fecal Coliform - No./100 mL	A.G.M. ≤ 20 S.V. ≤ 85			*							
Toxic Materials		f									

^{* =} The most restrictive beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.
- b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in <u>NAC 445A.118</u>.
- d Increase in color must not be more than 10 PCU above natural conditions.
- ^e The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R093-13, 12-23-2013; R102-16 & R109-16, 12-19-2017)

Section 4. NAC 445A.1806 is hereby amended to read as follows:

NAC 445A.1806 Carson Region: Carson River, East Fork at Muller Lane. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as the East Fork of the Carson River from the Riverview Mobile Home Park at U.S. Highway 395 to Muller Lane, except for the length of the river within the exterior borders of the Washoe Indian Reservation. This segment of the East Fork of the Carson River is located in Douglas County.

Carson River, East Fork at Muller Lane

	REQUIREME	WATER					Bene	ficial Use	2S ^a				
	NTS	QUALITY					l	I Clar Cb.	1				
	TO	CRITERIA											
PARAMET						<i>C</i> ,	. T		т 1	XX 7'1 11'	A 11 1	г 1	
ER	MAINTAIN	ТО	Livesto				Noncont						
	EXISTING	PROTECT		on	ic	ct	act	al	al	fe	ic	ce	h
	HIGHER	BENEFICI											
	QUALITY	AL USES											
Beneficial Us	ses		X	X	X	X	X	X	X	X			
Aquatic Life	Species of Conc	ern	[Rainbo	w trout a	ind bro	wn trou	ıt] Native	warm-we	iter spec	ies			
<u> </u>	•	<i>S.V.</i>	_										
		~ 20											
		$\frac{20}{10} \leq$											
		\(\frac{\geq 20}{\subseteq} \leq \frac{\geq 20}{\subseteq} \l											
Temperatur		110√ ≤											
e - °C		May 17°C											
		S.V. ≤											
		Jun 21°C			*								
		S.V. 21 C											
ΔT ^b - °C	$\Delta T = 0$	Jul = 22°C											
<u> </u>			Ī	ĺ				1					
		Aug-†											
		Oct \le 2°C											
		ΔT											
	a 7.4 -	S.V. 6.5 -											
pH - SU	S.V. 7.4 -	S.V. 9 0			*								
pri se	0.7	$\Delta pH_{\pm 0.5}^{S.V.}$											
		S.V.											
Dissolved		Nov-											
Oxygen -		$May \ge 6.0$			*								
mg/L		$S.V. \ge 5.0$											
mg/ L		Jun-											
		Oct											
Total													
Phosphorus		A- ≤			*	*							
(as P) -		Avg. 0.10			~	~							
mg/L		Č											
Total													
Nitrogen (as	$A-Avg. \le 0.5$				*	*							
	$S.V. \leq 0.8$												
N) - mg/L													
Nitrate (as		S.V. ≤ 10						*					
N) - mg/L													
Nitrite (as		$S.V. \frac{\leq}{0.06}$			*								
N) - mg/L		3. v · 0.06		<u>L</u>									L l
Total													
Ammonia					,								
(as N) -		с			*								
mg/L													
Total								 					\vdash
Suspended		$S.V. \leq 80$	Ī	I	*			1					
Solids -													
mg/L													
Turbidity -		S.V. ≤ 10			*								
NTU		S. v. ≥ 10											
Color - PCU	d	S.V. ≤ 75						*					
Total		5.1.2/3											
Dissolved	≤ A Ava 190	A500											
	A-Avg. 180	$\frac{A}{Avg} \le 500$						*					
Solids -	S.V. ≤												
mg/L	205												
		·			_	· <u></u>				· <u></u>	· <u></u>		_

	REQUIREME	WATER					Bene	ficial Use	es ^a			
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto	_	. ^		Noncont act	_	Industri al	_	Aesthet ic	Mars h
Chloride - mg/L	A-Avg. ≤ 8 S.V. ≤ 10	S.V. ≤ 250						*				
Sulfate - mg/L		S.V. ≤ 250						*				
Sodium - SAR	A-Avg. ≤ 2	$\frac{A}{Avg.} \le 8$		*								
Alkalinity (as CaCO ₃) - mg/L		S.V.≥ 20			*							
E. coli - cfu/100 mLe		$\begin{array}{c} G.M. \leq 126 \\ S.V. \leq 410 \end{array}$				*						
Fecal Coliform - No./100 mL	A.G.M. ≤ 50	S.V. ≤ 1,000		*								
Toxic Materials		f										

^{* =} The most restrictive beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.
- Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in NAC 445A.118.
- d Increase in color must not be more than 10 PCU above natural conditions.
- ^e The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R093-13, 12-23-2013; R102-16 & R109-16, 12-19-2017)

Section 5. NAC 445A.1808 is hereby amended to read as follows:

NAC 445A.1808 Carson Region: Carson River at Genoa Lane. (NRS 445A.425, 445A.520) The limits of this table apply to the bodies of water known as the Carson River, including the East Fork of the Carson River from Muller Lane to the West Fork, the West Fork of the Carson River from the California-Nevada state line to the East Fork, and the main stem of the Carson River from the confluence of the East and West Forks to Genoa Lane. These segments of the Carson River are located in Douglas County.

Carson River at Genoa Lane

	REQUIREME	WATER					Bene	ficial Use	es ^a				
DAD AMET	NTS TO	QUALITY CRITERIA											
PARAMET ER	MAINTAIN	TO	Livesto				Noncont						
LIC	EXISTING	PROTECT		on	ic	ct	act	al	al	fe	ic	ce	h
	HIGHER QUALITY	BENEFICI AL USES											
Beneficial Us		THE COED	X	X	X	X	X	X	X	X			\vdash
	Species of Conc	ern					wn trout.				cies		
	*	S.V.								Ĺ			
		≤ 28											
		[S.V. Nov-											
Temperatur		Apr ≤ 13											
e - °C		S.V. ≤ 17			*								
	$\Delta T = 0$	$\frac{\text{May}}{\text{Log}} \leq 23$											
ΔT ^b - °C	$\Delta 1 = 0$	Jun ≤2 S.V.											
		Jul-											
		Oet											
	7.4	ΔΤ											_
pH - SU	S.V. 7.4 -	S.V. 6.5 -			*								
pri de	0.5	$\Delta pH_{\pm 0.5}^{9.0}$											
		S.V.											
Dissolved		Nov-											
Oxygen -		$Apr \ge 6.0$ S.V. \ge 5.0			*								
mg/L		May-											
		Oct											
Total Phosphorus		۸ -											
(as P) -		A-≤ Avg. 0.10			*	*							
mg/L		1116.0.10											
Total	A-Avg. ≤ 0.8												
Nitrogen (as	$S.V. \leq 1.3$				*	*							
N) - mg/L Nitrate (as													\vdash
N) - mg/L		S.V. ≤ 10						*					
Nitrite (as		C V ≤			*								
N) - mg/L		$S.V.\frac{\leq}{0.06}$			·								
Total													
Ammonia (as N) -		с			*								
mg/L													
Total													
Suspended		S.V. ≤ 80			*								
Solids - mg/L													
Turbidity -		0.17 - 10			*								\vdash
NTU		S.V. ≤ 10			*								
Color - PCU	d	S.V. ≤ 75						*					
Total	<u> </u>	A- ≤											
Dissolved Solids -	A-Avg. 165 S.V. ≤	Avg. 500						*					
mg/L	3. v. ≤ 220												
Chloride -	A-Avg. ≤ 8							*					\Box
mg/L	$S.V. \le 12$	S.V.											

	REQUIREME	WATER					Bene	ficial Use	es ^a		
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto ck	_	_		Noncont act	_			Mars h
		≤ 250									
Sulfate - mg/L		S.V. ≤ 250						*			
Sodium - SAR	A-Avg. ≤ 2	$\frac{A}{Avg} \le 8$		*							
Alkalinity (as CaCO ₃) - mg/L		S.V.≥20			*						
E. coli - cfu/100 mLe		≤ G.M. 126 S.V. ≤ 410				*					
Fecal Coliform - No./100 mL	A.G.M. ≤ 180	S.V. ≤ 1,000		*							
Toxic Materials		f									

^{* =} The most restrictive beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.
- Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in <u>NAC 445A.118</u>.
- d Increase in color must not be more than 10 PCU above natural conditions.
- The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R102-16 & R109-16, 12-19-2017)

Section 6. NAC 445A.1812 is hereby amended to read as follows:

NAC 445A.1812 Carson Region: Carson River at Cradlebaugh Bridge. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as the Carson River from Genoa Lane to U.S. Highway 395 at Cradlebaugh Bridge, except for the length of the river within the exterior borders of the Washoe Indian Reservation. This segment of the Carson River is located in Douglas County.

STANDARDS OF WATER QUALITY Carson River at Cradlebaugh Bridge

	REQUIREME	WATER					Bene	ficial Use	es ^a				
	NTS	QUALITY											
PARAMET	TO	CRITERIA											
ER	MAINTAIN	TO	Livesto	Irrigati	Aquat		Noncont	Municip	Industri	Wildli	Aesthet	Enhan	Mars
LK	EXISTING	PROTECT	ck	on	ic	ct	act	al	al	fe	ic	ce	h
	HIGHER	BENEFICI											
	QUALITY	AL USES											
Beneficial Us			X	X	X	X	X	X	X	X			
Aquatic Life	Species of Conc	ern	[Catfish	, rainbov	v trout	and bro	own trout.] Native 1	varm-wa	iter spe	cies		
		S.V.											
		≤ 28											
		[S.V.											
Temperatur		Nov-											
e - °C		$Apr \le 13$											
		<u>S.V. ≤ 17</u>			*								
		May ≤ 23]											
ΔT ^b - °C	$\Delta T = 0$	Jun ≤2											
		S.V.											
		Jul-											
		Oct											
		ΔΤ											
	S.V. $\frac{7.5}{8.4}$	S.V. 6.5 -			*								
pH - SU	8.4	$\Delta pH_{\pm 0.5}^{S.V.}$			*								
		S.V.											
Dissolved		Nov-											
Oxygen -		$Apr \ge 6.0$			*								
mg/L		$S.V. \ge 5.0$											
		May- Oct											
Total		Oct											
Phosphorus		A- ≤											
(as P) -		$A^{-} \le A$			*	*							
mg/L		Avg. 0.10											
Total													
Nitrogen (as	$A-Avg. \le 0.85$				*	*							
Nitrogen (as N) - mg/L	$S.V. \le 1.2$												
Nitrate (as N) - mg/L		$S.V. \le 10$						*					
Nitrite (as													
		$S.V.\frac{\leq}{0.06}$			*								
N) - mg/L Total		0.00					-	-					\vdash
Ammonia													
(as N) -		с			*								
mg/L													
Total			1	1			1	 			1		$\vdash \vdash$
Suspended													
Suspended Solids -		$S.V. \leq 80$			*								
mg/L													
Turbidity -													
NTU		$S.V. \le 10$			*								
	d	C V / 75						*					\vdash
Color - PCU	4	S.V. ≤ 75						, r			}		\vdash
Total	A A < 100	A 500											
Dissolved	$A-Avg. \le 180$	$\frac{A}{Avg} \le 500$						*					
Solids -	$S.V. \leq 230$												
mg/L	A A = = 0							 			}		\vdash
Chloride -	$A-Avg. \le 8$	0.17 < 0.50						*					
mg/L	S.V. ≤ 15	S.V. ≤ 250											

	REQUIREME	WATER				Bene	ficial Use	es ^a			
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	_	. ^		Noncont act	^			Enhan ce	Mars h
Sulfate - mg/L		S.V. ≤ 250					*				
Sodium - SAR	A-Avg. ≤ 2	$A \leq 8$ Avg.	*								
Alkalinity (as CaCO ₃) - mg/L		S.V.≥20		*							
E. coli - cfu/100 mL ^e		G.M. ≤ 126 S.V. ≤ 410			*						
Fecal Coliform - No./100 mL		S.V. ≤ 1,000	*								
Toxic Materials		f									

^{* =} The most restrictive beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.
- Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in NAC 445A.118.
- d Increase in color must not be more than 10 PCU above natural conditions.
- ^e The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R093-13, 12-23-2013; R102-16 & R109-16, 12-19-2017)

Section 7. NAC 445A.1814 is hereby amended to read as follows:

NAC 445A.1814 Carson Region: Carson River at the Mexican Ditch Gage. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as the Carson River from U.S. Highway 395 at Cradlebaugh Bridge to the Mexican Ditch Gage. This segment of the Carson River is located in Carson City and Douglas County.

STANDARDS OF WATER QUALITY Carson River at the Mexican Ditch Gage

PARAMET RAINTAIN FXISTING PROTECT PROTECT PARAMET PARA		REQUIREME	WATER					Bene	ficial Use	es ^a				
MAINTAIN TO Livesto Irrigati Aquat Conta Noncont all fe irrigati Aquat Conta Aquat			QUALITY											
EXISTING PROTECT ck and is c et act al al al fe ic ce h Higher QUALITY BENEFICIAL LUSES Beneficial Uses Aquatic Life Species of Concern S.V.				Livesto	Irrigati	Aquat	Conta	Noncont	Municin	Industri	Wildli	A acthat	Enhan	More
HIGHER BENEFICIA LUSES	ER													
Reneficial Uses		HIGHER												
Aquatic Life Species of Concern S.V.			L USES											
Temperatur														
Temperatur	Aquatic Life	Species of Conc		[Rainbo	w trout a	and bro	wn tro i	at.] Native	warm-w	ater spe	cies	ı	1	
Temperatur e - °C														
Temperatur e - °C														
ΔT = 0 ΔT = 0 S.V. ≤ May ≥ 31 / Jun ≤ 2 s.V. * May ≥ 23 / Jun ≤ 2 s.V. μ Oct ΔT = 0 S.V. ≥ S.V. ≥ May ≥ 10 / S.V. ≥ 10 / S	Temperatur													
ATb - C AT = 0 My-231 Jun ≤ 2 SV. Jul Oct yell Oct AT pH - SU S.V. 2.5.5 S.V. 9.0 ApH ± 0.5 * Dissolved Oxygen - mg/L S.V. ≥ My-5.0 Oct * Dossolved Oxygen - mg/L A-Avg. 0.8 S.V. ≥ My-5.0 Oct * Total Phosphorus (as P) - mg/L A-Avg. 0.8 S.V. ≤ N. ≤ N. ≤ N. ≥ My-mg/L * Nitrate (as N) - mg/L S.V. ≤ 10	e - °C		<u>Apr ≤ 17</u>											
AT ^b - °C						*								
S.V. Jul Oet AT AT AT AT AT AT AT A	ATh oc	$\Delta T = 0$	May-23]											
H - SU S.V. 7.4 S.V. 9.0 ApH ± 0.5 S.V. 9.0 ApH ± 0.5	Δ1° - °C													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
Dissolved		~ 74-												
Dissolved	pH - SU	S.V. 7.1				*								
Dissolved Oxygen - mg/L S.V. Nov-≥ Apr6.0 S.V. ≥ May-5.0 Oct Total Phosphorus A-Avg. ≤ S.V. ≤ Mitrogen (as P) - mg/L S.V. ≤														
Dissolved Oxygen - mg/L														
Oxygen - mg/L Apr 6.0 S.V. ≥ May-5.0 Oct * Total Phosphorus (as P) - mg/L A-Avg. ≤ May-5.0 Oct * Total Nitrogen (as N) - mg/L A-Avg. 0.8 S.V. ≤ 1.3 * Nitrate (as N) - mg/L S.V. ≤ 10 Solids - mg/L * Total Animonia (as N) - mg/L S.V. ≤ 80 Solids - mg/L * Total Suspended Solids - mg/L S.V. ≤ 80 Solids - mg/L * Total Suspended Solids - mg/L S.V. ≤ 10 S.V. ≤	Dissolved													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						*								
Total Phosphorus														
Total Phosphorus (as P) - mg/L A-Avg. ≤ (as N) - mg/L A-Avg. ≤	8													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Phosphorus		A A ≤			*	*							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A-Avg. 0.10											
Total Suspended Supended Suspended Suspen	mg/L													
Nitrote (as N) - mg/L S.V. ≤ 10 *														
Nitrate (as N) - mg/L						*	*							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N) - mg/L	1.3												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			S.V. < 10						*					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									ļ					
			$S.V{0.06}^{\leq}$			*								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.00						1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ammonia		c			*								
			Ĭ			"								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Solids -		S.V. ≤ 80			*								
	mg/L													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turbidity -		S V < 10			*								
		_												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			S.V. ≤ 75						*					
Solids - $S.V. \le \frac{A-Avg.}{360}$ Solids - $\frac{A-Avg.}{360}$ Solids -														
mg/L 360		A-Avg. 285 S V <	A-Avg. ≤ 500						*					
Chloride - A-Avg. ≤ 17 *			300											
									*					
	mg/L	$S.V. \leq 23$	S.V.						·r					

	REQUIREME	WATER					Bene	ficial Use	es ^a				
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY		ck	_	_		Noncont act	_		_	Aesthet ic	Enhan ce	Mars h
		≤ 250											
Sulfate - mg/L	A-Avg. ≤ 24 S.V. ≤ 100	S.V. ≤ 250						*					
Sodium - SAR	A-Avg. ≤ 2	A-Avg. ≤ 8		*									
Alkalinity (as CaCO ₃) - mg/L		$S.V.\frac{\geq}{20}$			*								
E. coli - cfu/100 mL ^e		≤ G.M. 126 S.V. ≤ 410				*							
Fecal Coliform - No./100 mL	≤ A.G.M. 110 S.V. ≤ 295	S.V. 1,00 0		*									
Toxic Materials		f											

^{* =} The most restrictive beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.
- Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- The water quality criteria for ammonia are specified in NAC 445A.118.
- d Increase in color must not be more than 10 PCU above natural conditions.
- ^e The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R102-16 & R109-16, 12-19-2017)

Section 8. NAC 445A.1816 is hereby amended to read as follows:

NAC 445A.1816 Carson Region: Carson River near New Empire. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as the Carson River from the Mexican Ditch Gage to New Empire. This segment of the Carson River is located in Carson City.

STANDARDS OF WATER QUALITY Carson River near New Empire

	REQUIREME	WATER					Bene	ficial Use	es ^a				
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA	ck	on	ic	ct		al	al	fe	Aesthet ic	Enhan ce	Mars h
Beneficial Us			X	X	X	X	X	X	X	X			
Aquatic Life	Species of Conc		[Smallm	outh bas	ss, rain l	bow tro	out and bro	own trout	.]_ Nativ	e war <mark>m</mark>	-water s	pecies	
Temperatur e - °C ΔT ^b - °C	$\Delta T = 0$	S. V. ≤ 28 [S. V. Nov. ≤ 18 May ≤ 23] S. V. ≤ 2 Jun Oct ΔT			*								
pH - SU	S.V. 7.4 - 8.4	S.V. 6.5 - ΔpH 9.0 ±0.5			*								
Dissolved Oxygen - mg/L		S.V.≥ 5.0			*								
Total Phosphorus (as P) - mg/L		A-≤ Avg. 0.10			*	*							
Total Nitrogen (as N) - mg/L	A-Avg. ≤ 1.3 S.V. ≤ 1.7				*	*							
Nitrate (as N) - mg/L		S.V.≤10						*					
Nitrite (as N) - mg/L		$S.V.\frac{\leq}{0.06}$			*								
Total Ammonia (as N) - mg/L		с			*								
Total Suspended Solids - mg/L		S.V.≤80			*								
Turbidity - NTU		S.V.≤10			*								
Color - PCU	d	S.V. ≤ 75						*					
Total Dissolved Solids - mg/L	A-Avg. ≤ 260 S.V. ≤ 375	A-≤ Avg. 500						*					
Chloride - mg/L	A-Avg. ≤ 13 S.V. ≤ 24	S.V. ≤ 250						*					
Sulfate - mg/L		S.V. ≤ 250						*					
Sodium - SAR	A -Avg. ≤ 2	$\frac{A}{Avg} \le 8$		*									
Alkalinity		S.V.≥ 20			*								

	REQUIREME	WATER					Bene	ficial Use	S ^a			
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto	_	. ^		Noncont act	_		_	_	Mars h
(as CaCO ₃) - mg/L												
E. coli - cfu/100 mL ^e		≤ G.M. 126 S.V.≤ 410				*						
Fecal Coliform - No./100 mL		S.V. ≤ 1,000		*								
Toxic Materials	-	f										

^{* =} The most restrictive beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.
- Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in NAC 445A.118.
- d Increase in color must not be more than 10 PCU above natural conditions.
- The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R102-16 & R109-16, 12-19-2017)

Section 9. NAC 445A.1792 is hereby amended to read as follows:

NAC 445A.1792 Carson Region: Designated beneficial uses. (NRS 445A.425, 445A.520) The designated beneficial uses for select bodies of water within the Carson Region are prescribed in this section:

						Ben	eficial U	ses				Water
Water Body Name	Segment Description	Lives tock	Irrigati on	. ^		Noncont act					Species of	Quality Standard NAC Referenc e
River	At the California-	X	X	X	X	X	X	X	X		Native	NAC 445A.179 6

						Ben	eficial U	ses						Water
Water Body Name	Description	Lives tock	Irrigati on			Noncont act	Munici pal			Aesthet ic	Enhan ce	Mars h	Aquatic Life Species of Concern	Quality Standard NAC Referenc e
at the state line	Nevada state line.												water species [Rainbow trout and brown trout]	
Bryant Creek near the state line	From the California- Nevada state line to its confluence with the East Fork of the Carson River.	X	X	X	X	X	X	X	X				Rainbow trout and brown trout	NAC 445A.179 8
Carson River, East Fork at the state line	At the California- Nevada state line.	X	Х	Х	X	X	Х	Х	X				Rainbow trout and brown trout	NAC 445A.180 2
Highway 395 south of	From the California-Nevada state line to the Riverview Mobile Home Park at U.S. Highway 395 south of Gardnerville, except for the length of the river within the exterior borders of the Washoe Indian Reservation.		X	X	X	X	X	X	X				Rainbow trout and brown trout	NAC 445A.180 4
Carson River, East Fork	From the Riverview Mobile Home Park at U.S.	X	X	X	X	X	X	X	X				Native warm- water species	NAC 445A.180 6

	1					Ben	eficial U	ses					Water
Water Body Name	Segment Description	Lives tock	_	_		Noncont act				Aesthet ic	Mars h	Aquatic Life Species of Concern	Quality Standard
at Muller Lane	Highway 395 to Muller Lane, except for the length of the river within the exterior borders of the Washoe Indian Reservation.											[Rainbow trout and brown trout]	
River, West Fork at the Brocklis s Slough	From the California -Nevada state line to the Brockliss Slough Diversion.	X	X	X	X	X	X	X	X			Native cold- water species	NAC 445A.## ##
Carson River at Genoa Lane	The East Fork of the Carson River from Muller Lane to the West Fork, the West Fork of the Carson River from the Brockliss Slough Diversion [California-Nevada state line] to the East Fork, and the main stem of the Carson River from the confluence of the East and West	X	X	X	X	X	X	X	X				NAC 445A.180 8

						Ben	eficial U	ses						Water
Water Body Name	Segment Description	Lives tock	Irrigati on	_		Noncont act	Munici pal			Aesthet ic	Enhan ce	Mars h	Aquatic Life Species of Concern	Quality Standard
	Forks to Genoa Lane.													
Carson River at Cradlebau gh Bridge	From Genoa Lane to U.S. Highway 395 at Cradlebaugh Bridge, except for the length of the river within the exterior borders of the Washoe Indian Reservation.		X	X	X	X	X	X	X				Native warm- water species [Catfish, rainbow trout and brown trout]	NAC 445A.181 2
Carson River at the Mexican Ditch Gage	From U.S. Highway 395 at Cradlebaugh Bridge to the Mexican Ditch Gage.		X	X	X	X	X	X	х				Native warm- water species [Rainbow trout and brown trout]	NAC 445A.181 4
Carson River near New Empire	From the Mexican Ditch Gage to New Empire.	X	X	X	X	X	X	X	X				[Smallmo	NAC 445A.181 6
Carson River at Dayton Bridge	From New Empire to the Dayton Bridge.	X	X	X	X	X	X	X	X				Walleye, channel catfish and white bass	NAC 445A.181 8
Carson River at Lahontan Reservoir	From the Dayton Bridge to Lahontan Reservoir.	X	X	X	X	X	X	X	X				Walleye, channel catfish and white bass	NAC 445A.182 2

						Ben	eficial U	ses						Water
Water Body Name	Segment Description	Lives tock		_		Noncont act	Munici pal			Aesthet ic	Enhan ce	Mars h	Aquatic Life Species of Concern	Quality Standard
	The entire reservoir.	X	X	X	X	X	X	X	X				Walleye, channel catfish and white bass	NAC 445A.182 4
Lower Carson River	From Lahontan Reservoir to the Carson Sink (the natural channel).	X	X	X	X	X	X	X	X					NAC 445A.182 6
Daggett Creek	From its origin to the Carson River.	X	X	X	X	X	X		X					NAC 445A.182 8
Genoa Creek	From its origin to the first diversion box at the mouth of the canyon, near the east line of section 9, T. 13 N., R. 19 E., M.D.B. & M.		X	X	X	X	X		X					NAC 445A.183 2
Sierra Canyon Creek	From its origin to the first diversion structure at the mouth of the canyon, near the east line of section 4, T. 13 N., R. 19 E., M.D.B. & M.	X	X	X	X	X	X		X					NAC 445A.183 4
Clear Creek at the gaging station	From its origin to gaging station number 10- 3105,	X	X	X	Х	X	X		X					NAC 445A.183 6

						Ben	eficial U	ses						Water
Water													Aquatic	Quality
Body	Segment	Lives				Noncont							Life	Standard
Name	Description	tock	on	ic	ct	act	pal	al	fe	ic	ce	h	Species of Concern	NAC Referenc
													Concern	e
	located in													
	the NE 1/4													
	of the NW													
	1/4 of													
	section 1, T.													
	14 N., R. 19													
	E., M.D.B. & M.,													
	except for													
	the length of													
	the creek													
	within the													
	exterior													
	borders of													
	the Washoe Indian													
	Reservation.													
	iccsci vation.													
	From													
	gaging													
	station number 10-													
	3105,													
	located in													
	the NE 1/4													
	of the NW													
	1/4 of													
Clear	section 1, T.													
Creek at	14 N., R. 19 E., M.D.B.													NAC
the	& M., to the	X	X	X	X	X	X	X	X				Trout	445A.183
Carson	Carson													8
River	River,													
	except for													
	the length of													
	the creek within the													
	exterior													
	borders of													
	the Washoe													
	Indian													
	Reservation.													
—	From its			1								 		
	origin to the													
17.1	point of													NAC
Kings Canyon	diversion of	X	X	X	X	X	X		X					445A.184
Callyon	the Carson													2
	City Water													
	Department, near the east													
<u> </u>	near the east	<u> </u>	I	<u> </u>	<u> </u>	l		<u> </u>				<u> </u>	<u> </u>	

		Beneficial Uses												Water
Water Body Name	Segment Description	Lives tock				Noncont act	Munici pal			Aesthet ic		Mars h	Aquatic Life Species of Concern	Quality Standard
	line of section 23, T. 15 N., R. 19 E., M.D.B. & M.													
Ash Canyon	From its origin to the first point of diversion of the Carson City Water Department, near the west line of section 12, T. 15 N., R. 19 E., M.D.B. & M.		X	X	X	X	X		X					NAC 445A.184 4
V-Line Canal	From the Carson diversion dam to its division into the S and L Canals.	X	X	X	X	X	X	X	X					NAC 445A.184 6
Rattlesna ke Reservoir	The entire reservoir; also known as S-Line Reservoir.	X	X	X	X	X	X	Х	X					NAC 445A.184 8
Indian Lakes	All the lakes, including Upper Lake, Likes Lake, Papoose Lake, Big Indian Lake, Little Cottonwood Lake, Big Cottonwood Lake and East Lake.	X	X	X	х	X	X	X	х					NAC 445A.185 2

	Beneficial Uses												Water	
Water Body Name	Segment Description	Lives tock	Irrigati on			Noncont act	Munici pal		Wildli fe	Aesthet ic	Enhan ce	Mars h	Aquatic Life Species of Concern	Quality Standard
Diagonal Drain	The entire length.	X	X	X	X	X	X	X	X					NAC 445A.185 4
South Carson Lake	The entire lake; also known as Government Pasture and the Greenhead Gun Club.	X	X	X	X	X	X	X	X					NAC 445A.185 6
Harmon Reservoir	The entire reservoir.	X	X	X	X	X	X	X	X					NAC 445A.185 8
Stillwater Marsh east of Westside Road	East of Westside Road and north of the community of Stillwater.	Х	X	Х	X	X	X	X	X					NAC 445A.186 2
Stillwater Marsh west of Westside Road	West of Westside Road and south of the community of Stillwater.	X	Х	X		Х		Х	X					NAC 445A.186 4
Corsser Creek	From its origin to Brockliss Slough.	X	X	X	X	X	X		X				Native cold- water species	Nac 445A.## ##
Monume nt Creek	From its origin to Brockliss Slough.	X	X	X	X	X	X		X				Native cold- water species	Nac 445A.## ##
Mott Creek	From its origin to Brockliss Slough.	X	X	X	X	X	X		X				Native cold- water species	Nac 445A.## ##

						Water								
Water Body Name						Noncont act	Munici pal			Aesthet ic		Mars h	Aquatic Life Species of Concern	Quality Standard NAC Referenc e
Sherida n Creek	From its origin to Brockliss Slough.	X	X	X	X	X	X		X				*110404	Nac 445A.## ##
Irrigation	Irrigation	rigation												
Livestock	Watering of livestock													
Contact	Recreation involving contact with the water													
Nonconta ct	Recreation no	ot invo	lving co	ntact w	ith the	water								
Industrial	Industrial sup	ply												
Municipal	Municipal or	dome	stic supp	ly, or b	ooth									
Wildlife	Propagation (of wild	llife											
Aquatic	Propagation	Propagation of aquatic life												
Aesthetic	Waters of extraordinary ecological or aesthetic value													
Enhance	Enhancement of water quality													
Marsh	Maintenance	of a fr	eshwate	r marsł	1									

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R101-14, 4-4-2016; R109-16, 12-19-2017)

Section 10. Chapter 445A of NAC is hereby amended by adding thereto the provisions set forth in sections 11 to 14, inclusive, of this regulation.

Section 11.

NAC 445A. #### Carson Region: Corsser Creek. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as Corsser Creek from its origin to Brockliss Slough. Corsser Creek is located in Douglas County.

Corsser Creek

	REQUIREME	WATER					Bene	ficial Us	es ^a				
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto ck				Noncont act				Aesthe tic		Mars h
Beneficial U	X	X	X	\boldsymbol{X}	X	X		X					
Aquatic Life	Species of Cond	cern	Native cold-water species										
Temperatur e - ℃ ΔT ^b - ℃		$S.V. \leq 20$ $\Delta T = 0$			*								
pH - SU		$S.V. \frac{6.5}{9.0}$			*								
Dissolved Oxygen - mg/L		<i>S.V.</i> ≥ 6.0			*								
Total Phosphorus (as P) - mg/L		<i>S.V.</i> ≤ 0.10			*	*							
Total Ammonia (as N) - mg/L		c			*								
Total Dissolved Solids - mg/L		S.V. ≤ 500						*					
E. coli - cfu/100 mL ^d		≤ G.M. 126 S.V. ≤ 410				*							
Fecal Coliform - No./100 mL		S.V. ≤ 1,000		*									
Toxic Materials		e											

^{* =} The most restrictive beneficial use.

X = Beneficial use.

Section 12.

NAC 445A. #### Carson Region: Monument Creek. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as Monument Creek from its origin to Brockliss Slough. Monument Creek is located in Douglas County.

a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.

b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.

^c The water quality criteria for ammonia are specified in <u>NAC 445A.118</u>.

The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.

^e The water quality criteria for toxic materials are specified in <u>NAC 445A.1236</u>.

STANDARDS OF WATER QUALITY

Monument Creek

	REQUIREME	WATER												
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto ck				Noncont act		Industr ial		Aesthe tic	Enhan ce	Mars h	
Beneficial U	X	X	X	\boldsymbol{X}	X	X		X						
Aquatic Life	Species of Cond	cern	Native	Native cold-water species										
Temperatur e - ℃ ΔT ^b - ℃		$S.V. \leq 20$ $\Delta T = 0$			*									
pH - SU		S.V. 6.5 -			*									
Dissolved Oxygen - mg/L		<i>S.V.</i> ≥ <i>6.0</i>			*									
Total Phosphorus (as P) - mg/L		$S.V. \frac{\leq}{0.10}$			*	*								
Total Ammonia (as N) - mg/L		c			*									
Total Dissolved Solids - mg/L		<i>S.V.</i> ≤ 500						*						
E. coli - cfu/100 mL ^d		≤ G.M. 126 S.V. ≤ 410				*								
Fecal Coliform - No./100 mL		S.V. ≤ 1,000		*										
Toxic Materials		e												

^{* =} The most restrictive beneficial use.

X = Beneficial use.

Section 13.

^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.

b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.

The water quality criteria for ammonia are specified in <u>NAC 445A.118</u>.

The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.

The water quality criteria for toxic materials are specified in NAC 445A.1236.

NAC 445A. #### Carson Region: Mott Creek. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as Mott Creek from its origin to Brockliss Slough. Mott Creek is located in Douglas County.

STANDARDS OF WATER QUALITY Mott Creek

	REQUIREME	WATER	Beneficial Uses ^a										
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto ck	_			Noncont act						Mars h
Beneficial Uses			X	X	X	X	X	X		X			
Aquatic Life	Species of Conc	ern	Native cold-water species										
Temperatur e - ℃ ΔT ^b - ℃		$S.V. \le 20$ $\Delta T = 0$			*								
pH - SU		$S.V. \frac{6.5}{9.0}$			*								
Dissolved Oxygen - mg/L		<i>S.V.</i> ≥ <i>6.0</i>			*								
Total Phosphorus (as P) - mg/L		$S.V. \frac{\leq}{0.10}$			*	*							
Total Ammonia (as N) - mg/L		c			*								
Total Dissolved Solids - mg/L		<i>S.V.</i> ≤ 500						*					
E. coli - cfu/100 mL ^d		≤ G.M. 126 S.V. ≤ 410				*							
Fecal Coliform - No./100 mL		S.V. ≤ 1,000		*									
Toxic Materials		e											

^{* =} The most restrictive beneficial use.

X = Beneficial use.

^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.

Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.

^c The water quality criteria for ammonia are specified in <u>NAC 445A.118</u>.

The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.

The water quality criteria for toxic materials are specified in NAC 445A.1236.

NAC 445A. #### Carson Region: Sheridan Creek. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as Sheridan Creek from its origin to Brockliss Slough. Sheridan Creek is located in Douglas County.

STANDARDS OF WATER QUALITY Sheridan Creek

	REQUIREME	WATER	Beneficial Uses ^a										
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto ck		Aquat ic		Noncont act	Munici pal	Industr ial	Wildli fe	Aesthe tic	Enhan ce	Mars h
Beneficial U	Beneficial Uses			X	X	X	X	X		X			
	Species of Cond	ern	Native	Native cold-water species									
Temperatur e - ℃ ΔT ^b - ℃		$S.V. \le 20$ $\Delta T = 0$			*								
р Н - SU		S.V. 6.5 -			*								
Dissolved Oxygen - mg/L		<i>S.V.</i> ≥ <i>6.0</i>			*								
Total Phosphorus (as P) - mg/L		$S.V. \frac{\leq}{0.10}$			*	*							
Total Ammonia (as N) - mg/L		c			*								
Total Dissolved Solids - mg/L		<i>S.V.</i> ≤ 500						*					
E. coli - cfu/100 mL ^d		≤ G.M. 126 S.V. ≤ 410				*							
Fecal Coliform - No./100 mL		S.V. ≤ 1,000		*									
Toxic Materials		e											

^{* =} The most restrictive beneficial use.

X = Beneficial use.

^a Refer to NAC 445A.122 and 445A.1792 for beneficial use terminology.

Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.

^c The water quality criteria for ammonia are specified in <u>NAC 445A.118</u>.

d The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.

^e The water quality criteria for toxic materials are specified in <u>NAC 445A.1236</u>.