PROPOSED REGULATION OF THE STATE ENVIRONMENTAL COMMISSION

LCB FILE NO. R146-24I

THE FOLLOWING DOCUMENT IS THE INITIAL DRAFT REGULATION PROPOSED BY THE AGENCY SUBMITTED ON 06/20/2024

PETITION P2024-15 - 06/17/2024

PROPOSED PERMANENT REGULATION OF THE NEVADA STATE ENVIRONMENTAL COMMISSION

AUTHORITY: §§1-318, NRS 445A.425 and 445A.520.

A PERMANENT REGULATION relating to water quality; making various changes in provisions that establish standards for water quality; and providing other matters properly relating thereto.

<u>PETITION 2024-15</u> Changes to the Nevada Administrative Code revising the Nevada water quality regulations to remove Schroeder Reservoir NAC 445A.2182 from the NAC, adjust the reach description for the Beaver Dam Wash NAC 445A.2178, and remove references to offensive terms and align with name changes made by the United States Board on Geographic Names. The proposed regulation will also amend NAC 445A.1233 to remove the reference to the "2017 Review – Water Quality Standards for Salinity, Colorado River System" and replace it with language referencing the most current version of the document. NRS 233B.040(a) authorizes the adoption by reference of material published by another authority.

Proposed Revisions:

The proposed updates to the NAC are shown below with *additions in blue bold-italics* text and omissions in shown in red [strikethrough] text, bound by brackets:

Section 1. NAC 445A.2178 is hereby amended to read as follows:

Standards for Surface Water Quality

NAC 445A.2178 Colorado Region: Beaver Dam Wash. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as the Beaver Dam Wash *within the Nevada State boundary*. [above Schroeder Reservoir.] The Beaver Dam Wash is located in Lincoln County.

STANDARDS OF WATER QUALITY
Beaver Dam Wash

	REQUIREME	WATER					Bene	ficial Use	es ^a				
	NTS	QUALITY											
PARAMET	TO	CRITERIA		.		<i>a</i> .				***** 11:		r. 1	
ER	MAINTAIN EXISTING	TO PROTECT	Livesto				Noncont act	Municip al	Industri al		Aesthet ic		Mars h
	HIGHER	BENEFICI		OII	ic	Ci	act	aı	aı	16	ic	CE	11
	QUALITY	AL USES											
Beneficial Us			X	X	X	X	X	X	X	X			
Aquatic Life	Species of Conc												
		S.V. Nov-											
		Apr											
Temperatur e - °C		S.V. ≤ 13											
e - °C		May-≤ 17			*								
	A.T. 0	Jun ≤ 23											
ΔT ^b - °C	$\Delta T = 0$	S.V.≤2 Jul-											
		Oct											
		ΔΤ											
		$S.V. \frac{6.5}{9.0}$ $\Delta pH \pm 0.5$											
pH - SU		$\Delta pH = 0.5$			*								
		S.V.											
		Nov-											
Dissolved		$May \ge 6.0$			*								
Oxygen - mg/L		$S.V. \ge 5.0$											
mg/L		Jun-											
Total		Oct						<u> </u>					
Phosphorus	$A-Avg. \le 0.01$ S.V. ≤ 0.013	A- ≤											
(as P) -	$S.V. \leq S.V. \leq $	Avg. 0.05			*	*							
mg/L	0.013												
Nitrate (as	S.V. ≤ 0.22	S.V. ≤ 10.0						*					
N) - mg/L								<u> </u>					
Nitrite (as N) - mg/L		S.V. ≤ 0.06			*								
Total		0.00											
Ammonia		с			*								
(as N) -													
mg/L													
Total Suspended													
Solids -		S.V. ≤ 25			*								
mg/L													
Turbidity -		S.V. ≤ 10			*								
NTU													
Color - PCU		S.V. ≤ 75						*					
Total Dissolved													
Solids -		d						*					
mg/L													
Alkalinity													
(as CaCO ₃)		S.V.≥ 20			*								
- mg/L													
E. coli -		≤ G.M. 126											
cfu/100 mLe		S.V.≤				*							
		410											
	i	I					1	1				1	

	REQUIREME	WATER				Bene	ficial Use	es ^a		
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto ck	_		Noncont act	_			Mars h
Fecal Coliform - No./100 mL		≤ S.V. 1,00 0		*						
Toxic Materials		f								

^{* =} The most restrictive beneficial use.

X = Beneficial use.

- ^a Refer to NAC 445A.122 and 445A.2142 for beneficial use terminology.
- Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in NAC 445A.118.
- d The salinity standards for the Colorado River system are specified in NAC 445A.1233.
- The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R102-16 & R109-16, 12-19-2017)

Section 2. NAC 445A.2182 is hereby amended to read as follows:

NAC 445A.2182—Colorado Region: Schroeder Reservoir. (NRS 445A.425, 445A.520)—The limits of this table apply to the entire body of water known as Schroeder Reservoir. Schroeder Reservoir is located in Lincoln County.

STANDARDS OF WATER OUALITY

Schroeder Reservoir

			~										
	REQUIREME	WATER					Bene	ficial Usc	:S ^a				
	NTS	QUALITY											
PARAMET	TO	CRITERIA											
ER	MAINTAIN	TO	Livesto	Irrigati	Aquat	Conta	Noncont	Municip	Industri	Wildli	Aesthet	Enhan	Mars
EX	EXISTING	PROTECT	ck	on	ic	ct	act	al	al	fe	ic	ce	h
	HIGHER	BENEFICI											
	QUALITY	AL USES											
Beneficial Us	ses		X	X	X	X	X	X	X	X	-	-	-
Aquatic Life	Species of Conc	ern	Trout.										
Temperatur		S.W < 20											
e - °C		S.V. ≤ 20 ΔT ≤ 3	-	-	*	-	-	-	-	-	-	-	-
ΔT^{b} $\stackrel{\circ}{-}$ $\stackrel{\circ}{C}$		<u> </u>											
nH - SII		S V 6.5			*								
p11 - 30	_	9.0	_	I -	_	_	_	l -	_	_	I -	_	I - I

	REQUIREME	WATER					Bene	ficial Use	es ^a				
PARAMET ER	NTS TO MAINTAIN EXISTING	PROTECT	Livesto ck	_		Conta et	Noncont act			~	Aesthet ic	Enhan ee	Mars h
	HIGHER QUALITY	BENEFICI AL USES											
Dissolved Oxygen - mg/L		S.V.≥ 6.0	-	-	*	-	-	-	-	-	-	ı	_
Total Phosphorus (as P) mg/L		S.V. ≤ 0.33	-	-	*	-	-	-	-	-	-	-	-
Total Ammonia (a s N) – mg/L		e	-	-	*	_	-	-	-	-	-	-	_
Total Dissolved Solids - mg/ L		S.V. ≤ 500	ı	-	1	ı	ı	*	1	ı	-	1	-
E. coli - efu/100 mL ^d	-	≤ G.M.126 S.V.≤ 410	ı	ı	ı	*	1	1	ı	i	ı	1	-
Fecal Coliform - No./100 mL		S.V. ≤ 1,000	_	*	-	_	-	-	-	-	_	-	-
Toxic Materials		e	_	_	_	_	-	-	-	-	-	_	_

^{* =} The most restrictive beneficial use.

— (Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R102-16 & R109-16, 12-19-2017)]

Section 3. NAC 445A.1288 is hereby amended to read as follows:

NAC 445A.1288 Black Rock Region: [Squaw Creek] *Granite Mountain* Reservoir. (NRS 445A.425, 445A.520) The limits of this table apply to the entire body of water known as [Squaw Creek] *Granite Mountain* Reservoir. [Squaw Creek] *Granite Mountain* Reservoir is located in Washoe County.

X - Beneficial use.

^{*} Refer to NAC 445A.122 and 445A.2142 for beneficial use terminology.

Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.

^e The water quality criteria for ammonia are specified in NAC 445A.118.

^d— The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.

e The water quality criteria for toxic materials are specified in NAC 445A.1236.

STANDARDS OF WATER QUALITY

[Squaw Creek] Granite Mountain Reservoir

	REQUIREME	WATER					Bene	ficial Use	esa			
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto ck				Noncont act				Aesthet ic	Mars h
Beneficial U	ses		X	X	X	X	X	X	X	X		
Aquatic Life	Species of Conc	ern	Trout.									
Temperatur e - $^{\circ}$ C $_{\Delta}$ T ^b - $^{\circ}$ C		$S.V. \le 20$ $\Delta T = 0$			*							
pH - SU		S.V. 6.5 -			*							
Dissolved Oxygen - mg/L		S.V.≥ 6.0			*							
Total Phosphorus (as P) - mg/L		S.V. ≤ 0.10			*	*						
Total Ammonia (as N) - mg/L		С			*							
Total Dissolved Solids - mg/L		S.V. ≤ 500						*				
E. coli - cfu/100 mL ^d		$G.M. \le 126$ $S.V. \le 410$				*						
Fecal Coliform - No./100 mL		S.V. ≤ 1,000		*								
Toxic Materials		e										

^{* =} The most restrictive beneficial use.

X = Beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1282 for beneficial use terminology.
- b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in <u>NAC 445A.118</u>.
- d The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in <u>NAC 445A.1236</u>.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R102-16 & R109-16, 12-19-2017)

Section 4. NAC 445A.1518 is hereby amended to read as follows:

NAC 445A.1518 Humboldt Region: Rock Creek at [Squaw Valley Ranch] Willow Creek. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as Rock Creek from its origin to [Squaw Valley Ranch] its confluence with Willow Creek. This segment of Rock Creek is located in Elko County.

STANDARDS OF WATER QUALITY

Rock Creek at [Squaw Valley Ranch] Willow Creek.

	REQUIREME		TER Beneficial Uses ^a										
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA	ck	on	ic	ct	Noncont act	Municip al	Industri al	fe	Aesthet ic	Enhan ce	Mars h
Beneficial U			X	X	X	X	X	X	X	X			
	Species of Conc	ern	Trout.										
Temperatur e - °C ΔT ^b - °C		$S.V. \le 20$ $\Delta T = 0$			*								
pH - SU		S.V. 6.5 - 9.0			*								
Dissolved Oxygen - mg/L		S.V.≥6.0			*								
Total Phosphorus (as P) - mg/L		S.V. ≤ 0.10			*	*							
Nitrate (as N) - mg/L		S.V. ≤ 10						*					
Nitrite (as N) - mg/L		S.V. ≤ 0.06			*								
Total Ammonia (as N) - mg/L		с			*								
Total Suspended Solids - mg/L		S.V. ≤ 25			*								
Turbidity - NTU		S.V. ≤ 10			*								
Color - PCU		S.V. ≤ 75						*					
Total Dissolved Solids - mg/L		S.V. ≤ 500						*					
Chloride - mg/L		1-hr≤ Avg. 860 ^d 96-hr≤ Avg. 230			*								

	REQUIREME	WATER					Bene	ficial Use	es ^a			
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto	-	_		Noncont act	_		_	_	Mars h
Sulfate - mg/L		S.V. ≤ 250						*				
Alkalinity (as CaCO ₃) - mg/L		S.V.≥20			*							
E. coli - cfu/100 mL ^e		≤ G.M. 126 S.V. ≤ 410				*						
Fecal Coliform - No./100 mL		S.V. ≤ 1,000		*								
Toxic Materials		f										

^{* =} The most restrictive beneficial use.

X = Beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1432 for beneficial use terminology.
- Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in NAC 445A.118.
- d One-hour and 96-hour average concentration limits may be exceeded only once every 3 years.
- The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R130-15, 4-4-2016; R102-16 & R109-16, 12-19-2017)

Section 5. NAC 445A.1522 is hereby amended to read as follows:

NAC 445A.1522 Humboldt Region: Rock Creek below [Squaw Valley Ranch] Willow Creek. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as Rock Creek below [Squaw Valley Ranch] Willow Creek. This segment of Rock Creek is located in Elko, Eureka and Lander Counties.

STANDARDS OF WATER QUALITY
Rock Creek below [Squaw Valley Ranch] Willow Creek.

	REQUIREME	WATER					Bene	ficial Use	es ^a				
	NTS	QUALITY											
PARAMET	ТО	CRITERIA		L									
ER	MAINTAIN	ТО					Noncont						
	EXISTING		ck	on	ic	ct	act	al	al	fe	ic	ce	h
	HIGHER	BENEFICI											
5 0 111	QUALITY	AL USES											
Beneficial Us	ses Species of Conc	orn	X	X	X	X	X	X	X	X			
	species of Conc			I	I		Ī	I		ī	Ī	Ī	1
Temperatur e °C		$S.V. \leq 34$			*								
e C ΔT ^b - °C		$\Delta T \leq 3$			· ·								
Δ1' - C		(5			-	-							
pH - SU		S.V. 6.5 -			*								
Dissolved													
Oxygen -		$S.V. \ge 5.0$			*								
mg/L													
Total													
Phosphorus		$S.V. \frac{\leq}{0.33}$			*								
(as P) -		0.33											
mg/L													
Nitrate (as N) - mg/L		S.V. ≤ 10						*					
Nitrite (as		C.V. < 1.0						*					
N) - mg/L		S.V. ≤ 1.0						Ĩ					
Total													
Ammonia		с			*								
(as N) -					*								
mg/L													
Total													
Suspended		S.V. ≤ 80			*								
Solids -		S. V. ≤ 80											
mg/L													
Turbidity -		S.V. ≤ 50			*								
NTU Color - PCU		S.V. ≤ 75						*					
Total		$3.V. \ge 73$											
Dissolved													
Solids -		$S.V. \leq 500$						*					
mg/L													
IIIg/L		1 hr											
Chloride -		$A_{VO} \leq$											
mg/L		96-hr 860 ^d			*								
mg/L		1-hr Avg. ≤ 96-hr Avg. ≤ 230											
Sulfate -													
mg/L		$S.V. \leq 250$						*					
Alkalinity													
(as CaCO ₃)		S.V.≥20			*								
- mg/L		20											
E. coli -		G.M. ≤ 126											
cfu/100 mLe		$S.V. \le 410$				*							
Fecal													
Coliform -		S.V. ≤ 1,000		*									
No./100 mL		1,000		<u> </u>									
Toxic		f											
Materials				<u> </u>									

^{*} = The most restrictive beneficial use.

X = Beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1432 for beneficial use terminology.
- Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- The water quality criteria for ammonia are specified in NAC 445A.118.
- d One-hour and 96-hour average concentration limits may be exceeded only once every 3 years.
- ^e The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R130-15, 4-4-2016; R102-16 & R109-16, 12-19-2017)

Section 6. NAC 445A.1928 is hereby amended to read as follows:

NAC 445A.1928 Walker Region: [Squaw] Mud Spring Creek. (NRS 445A.425, 445A.520) The limits of this table apply to the body of water known as [Squaw] Mud Spring Creek from its origin to the point of diversion of the Hawthorne Naval Ammunition Depot, near the north line of section 33, T. 9 N., R. 29 E., M.D.B. & M. [Squaw] Mud Spring Creek is located in Mineral County.

STANDARDS OF WATER QUALITY

[Squaw] Mud Spring Creek

	DECLUBENCE	MATER	<u> </u>				D D		9				$\overline{}$
	REQUIREME						Bene	ficial Use	S"				
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto ck	_	. ~		Noncont act		_	Wildli fe	Aesthet ic	Enhan ce	Mars h
Beneficial U	ses		X	X	X	X	X	X		X			
Aquatic Life	Species of Conc	ern											
Temperatur e - °C ΔT ^b - °C		$S.V. \le 20$ $\Delta T = 0$			*								
pH – SU		S.V. 6.5 -			*								
Dissolved Oxygen - mg/L		S.V.≥6.0			*								
Total Phosphorus (as P) - mg/L		S.V. ≤ 0.10			*	*							
Total Ammonia (as N) - mg/L		С			*								
Total Dissolved		S.V. ≤ 500						*					

	REQUIREME	WATER					Bene	ficial Use	s ^a			
PARAMET ER	NTS TO MAINTAIN EXISTING HIGHER QUALITY	QUALITY CRITERIA TO PROTECT BENEFICI AL USES	Livesto	-	. ^		Noncont act				Enhan ce	Mars h
Solids - mg/L	-											
E. coli - cfu/100 mL ^d		$G.M. \le 126$ $S.V. \le 410$				*						
Fecal Coliform - No./100 mL		S.V. ≤ 1,000		*								
Toxic Materials		e										

^{* =} The most restrictive beneficial use.

X = Beneficial use.

- ^a Refer to NAC 445A.122 and 445A.1882 for beneficial use terminology.
- b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value standard.
- ^c The water quality criteria for ammonia are specified in <u>NAC 445A.118</u>.
- ^d The geometric mean must not be exceeded in any 30-day period. The single value must not be exceeded in more than 10 percent of the samples collected within any 30-day period.
- ^e The water quality criteria for toxic materials are specified in NAC 445A.1236.

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R131-12, 12-20-2012; R102-16 & R109-16, 12-19-2017)

Section 7. NAC 445A.1233 is hereby amended to read as follows:

NAC 445A.1233 Cooperation regarding Colorado River; salinity standards. (NRS 445A.425, 445A.520)

- 1. The State of Nevada will cooperate with the other Colorado River Basin states and the Federal Government to support and carry out the conclusions and recommendations adopted April 27, 1972, by the Reconvened 7th Session of the Conference in the Matter of Pollution of the Interstate Waters of the Colorado River and its Tributaries.
- 2. Pursuant to the *most current version of the* "[2017] Review, —Water Quality Standards for Salinity, Colorado River System," as adopted by the Colorado River Basin Salinity Control Forum, *which provides* the flow weighted annual average concentrations for the calendar year for total dissolved solids in mg/L. *A copy of this document may be obtained free of charge from the Colorado River Basin Salinity Control Forum website, or by contacting the Nevada Division of Environmental <i>Protection.* [at the three lower main stem stations of the Colorado River are as follows:

<u>Station</u>		Salinity in mg/L
Below Dam	Hoover	723
Below Dam	Parker	747
At Dam	<u>Imperial</u>	879

[Environmental Comm'n, Water Pollution Control Reg. Appendix B, eff. 5-2-78]—(NAC A 12-3-84; R017-99, 9-27-99; R159-06, 9-18-2006; R130-10, 12-16-2010; R132-12, 12-20-2012; R109-16, 12-19-2017)—(Substituted in revision for NAC 445A.143)

Section 8. NAC 445A.2142 is hereby amended to read as follows:

NAC 445A.2142 Colorado Region: Designated beneficial uses. (NRS 445A.425, 445A.520) The designated beneficial uses for select bodies of water within the Colorado Region are prescribed in this section:

						Bene	ficial Us	es				Aquati	Water
Water Body Name	Segment Description	_	_			Noncont act				Enhan ce	Mars h	c Life	Quality Standard NAC
Colorado River below Davis Dam	Colorado River, from Davis Dam to the California- Nevada state line, except for the length of the river within the exterior borders of the Fort Mojave Indian Reservation.	Х	X	х	х	Х	х	Х	х			Adult cold- water fishery	<u>NAC</u> 445A.214 <u>6</u>
Lake Mohave	The entire lake.	X	X	X	X	X	X	X	X			Adult cold- water fishery	<u>NAC</u> 445A.214 7

						Bene	ficial Us	es					Aquati	Water
Water Body Name	Description	ck			Conta ct	Noncont act		Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life Specie s of Conce rn	NAC
bolow	From Hoover Dam to Willow Beach.	X	X	X	X	X	X	X	X				Adult cold- water fishery	<u>NAC</u> 445A.214 <u>8</u>
Lake Mead	Lake Mead, excluding the area covered by NAC 445A.2154, Inner Las Vegas Bay.	X	X	X	X	X	X	X	X				Warm -water fishery	445A.215
Inner Las Vegas Bay	Lake Mead from the confluence of the Las Vegas Wash with Lake Mead to 1.2 miles into Las Vegas Bay.	X	X	X		X		X	X				Warm -water fishery	445A.215
Las Vegas Wash at the Historic Lateral	From the confluence of Sloan Channel and Las Vegas Wash to the Historic Lateral. This segment encompasses the discharge from Clark County wastewater treatment plant, the City of Las Vegas wastewater treatment plant and the City of Henderson wastewater treatment plant.	X	X	X		X			X			X	Warm -water fish.	<u>NAC</u> 445A.215 <u>6</u>
Las Vegas Wash at Lake Mead	From the Historic Lateral to its confluence with Lake Mead.	X	X	X		X			X			Х	Warm -water fish.	<u>NAC</u> 445A.215 <u>8</u>

						Bene	eficial Us	es					Aquati	Water
Water Body Name	Segment Description	Livesto ck			Conta ct	Noncont act		Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life	Quality Standard NAC
Lake Las Vegas	The entire lake.		X	X	X	X			X				Warm -water fishery	NAC 445A.216 1
	At the Arizona- Nevada state line, near Littlefield, Arizona.	Х	X	X		X		X	X					NAC 445A.216 2
Virgin River at Mesquite	Mesquite.	X	X	X		X		X	X					<u>NAC</u> 445A.216 <u>4</u>
Virgin River at Lake Mead	From Mesquite to the river mouth at Lake Mead.	X	X	X		X		X	X					<u>NAC</u> 445A.216 6
Muddy River at the Glendale Bridge	From the river source to the Glendale Bridge, except for the length of the river within the exterior borders of the Moapa Indian Reservation.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.216 <u>8</u>
the Wells Siding	From the Glendale Bridge to the Wells Siding Diversion.	X	X	X	X	X		X	X					NAC 445A.217 2
	From the Wells Siding Diversion to the river mouth at Lake Mead.	X	X	X	X	X		X	X					NAC 445A.217 4
Meadow Valley Wash	From the bridge above Rox to its confluence with the Muddy River.	X	X	X		X		X	X					<u>NAC</u> 445A.217 <u>6</u>

						Bene	ficial Us	es				Aquati	Water
Water Body Name	Segment Description	Livesto ck				Noncont act			Wildli fe		Mars h	c Life	Quality Standard NAC
Beaver Dam Wash	Within the Nevada state Bounda ry. [Above Schroeder Reservoir.]	х	х	Х	Х	Х	х	х	Х				<u>NAC</u> 445A.217 <u>8</u>
[Schroed er Reservoi r]	[The entire reservoir.]	[X]			[Trout]	[<u>NAC</u> 445A.218 <u>2]</u>							
the national forest	From its origin to the national forest boundary.	X	X	X	X	X	X		X				<u>NAC</u> 445A.218 4
White River at Ellison Creek	From the national forest boundary to its confluence with Ellison Creek.	Х	X	Х	X	X	Х	X	X			Trout	<u>NAC</u> 445A.218 <u>6</u>
Dacey Reservoi r	The entire reservoir.	X	X	X	X	X	X	X	X				NAC 445A.218 8
Sunnysid e Creek	From its origin to Adams McGill Reservoir.	X	X	X	X	X	X	X	X				NAC 445A.219 2
Adams McGill Reservoi r	The entire reservoir.	X	X	X	X	X	X	X	X				<u>NAC</u> 445A.219 4
	The entire reservoir.	X	X	X	X	X	X	X	X			Trout	<u>NAC</u> 445A.219 <u>6</u>
Nesbitt Lake	The entire lake.	X	X	X	X	X	X	X	X				NAC 445A.219 <u>8</u>
Pahranag at Reservoi r	The entire reservoir.	X	X	X	X	X	X	X	X				NAC 445A.220 2

						Bene	eficial Us	es				Aquati	Water
Water Body Name	Segment Description	Livesto ck	_		Conta ct	Noncont act		Industri al	Wildli fe	Aesthet ic	Mars h	c Life	Quality Standard NAC
Bowman Reservoi r	The entire reservoir.	X	X	X	X	X	X	X	X				NAC 445A.220 4
\sim	From its headwaters to Eagle Valley Reservoir.	X	X	X	X	X	X	X	X			Trout	NAC 445A.220 6
Eagle Valley Reservoi r	The entire reservoir.	X	X	X	X	X	X	X	X			Trout	NAC 445A.220 8
Echo Canyon Reservoi r	The entire reservoir.	X	X	X	X	X	X	X	X			Trout	NAC 445A.221 2
	From its origin to the point where it crosses the east range line of T. 4 S., R. 67 E., M.D.B. & M.	X	X	X	X	X	X	X	X			Trout	NAC 445A.221 4
* · · ·	.												
Irrigation Livestoc													
k	Watering of li	vestock											
Contact	Recreation inv	olving c	ontact w	ith the	water								
Noncont act	Recreation no	t involvi	ng conta	ct with	the wa	ıter							
	Industrial supp	oly											
Municipa l	Municipal or o	domestic	supply,	or both	ı								
Wildlife	Propagation of	f wildlife	2										
	Propagation of												
	Waters of extr			gical or	aesthe	tic value							
Enhance	Enhancement	of water	quality										
Marsh	Maintenance of	of a fresh	water m	arsh									

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R037-19, 10-30-2019)

Section 9. NAC 445A.1282 is hereby amended to read as follows:

NAC 445A.1282 Black Rock Region: Designated beneficial uses. (NRS 445A.425, 445A.520) The designated beneficial uses for select bodies of water within the Black Rock Region are prescribed in this section:

						Bene	eficial Us	es					Aquati	Water
Water Body Name	Segment Descriptio n	Livesto ck			Conta ct		Municip al			Aesthet ic	Enhan ce	Mars h	c Life Specie s of	
Smoke Creek	From the California -Nevada state line to the Smoke Creek Desert.	X	X	X	X	X			X					NAC 445A.12 86
Granite Mounta in Reservo ir [Squaw Creek Reservoir]	The entire reservoir.	X	X	X	X	X	X	X	X				Trout	NAC 445A.12 88
Negro Creek	of section 28, T. 36 N., R. 23 E., M.D.B. & M.	X	X	X	X	X	X		X					NAC 445A.12 92
	From its origin to the exterior border of the Summit Lake Indian Reservati on.	X	X	X	X	X	X		X					<u>NAC</u> 445A.12 96
Leonard Creek	From its origin to the first point of diversion, near the south line	X	X	X	Х	X	X		X					<u>NAC</u> 445A.12 98

						Bene	ficial Us	es				Aquati	Water
Water Body Name	Descriptio	Livesto ck	Irrigati on			Nonconta ct	Municip al			Enhan ce	Mars h	c Life Specie s of	
	of section 12, T. 42 N., R. 28 E., M.D.B. & M.												
Bilk Creek, upper	From its origin to its intersection with the south line of section 35, T. 45 N., R. 32 E., M.D.B. & M.	X	X	X	X	X	X		X				NAC 445A.13 02
Bilk Creek at Bilk Creek Reservoir	From its intersection with the south line of section 35, T. 45 N., R. 32 E., M.D.B. & M., to Bilk Creek Reservoir.	X	X	X	х	X	х	X	X				<u>NAC</u> 445A.13 04
Bilk Creek Reservoir	The entire reservoir.	X	X	X	X	X	X	X	X			Trout	NAC 445A.13 06
Bottle Creek	From its origin to the first point of diversion, near the east line of section 23, T. 40 N., R. 32 E., M.D.B. & M.	Х	Х	X	X	Х	х		х				<u>NAC</u> 445A.13 08
River, East and South	From their origin to the confluenc e of the East and	X	X	Х	X	X	X		X				<u>NAC</u> 445A.13 12

						Bene	ficial Use	es				A quati	Water
Water Body Name		Livesto ck	Irrigati on	Aquat ic	Conta ct	Nonconta	Municip	Industri	Wildli fe	Aesthet ic	Mars h	s of	
	South Forks, except for the length of the river within the exterior borders of the Fort McDermit t Indian Reservati on. From the												
Quinn River (the slough)	Oregon-Nevada state line in section 31, T. 48 N., R. 38 E., M.D.B. & M., to the confluenc e with the main tributary of the Quinn River at	X	X	X		X		X	X				<u>NAC</u> 445A.13 16
Irrigation Livestock	Irrigation Watering o	of livesto	ock										

						Bene	ficial Us	es					Aquati	Water		
Water Body Name	Segment Descriptio n		•	. ^						Aesthet ic	Enhan ce	Mars h	s of	Quality Standard NAC Referenc e		
Contact	Recreation	involvin	g contac													
Noncontact	Recreation	not invo	ng contact with the water olving contact with the water													
Industrial	Industrial s	supply														
Municipal	Municipal	or domes	stic supp	ly, or b	oth											
Wildlife	Propagatio	n of wild	llife													
Aquatic	Propagatio	n of aqua	atic life													
Aesthetic	Waters of	extraordi	nary eco	logical	or aest	hetic valu	e									
Enhance	Enhancem	ent of wa	iter qual	ity												
Marsh	Maintenan	ce of a fr	eshwate	r marsh	1											

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R127-10, 12-16-2010; R129-10, 1-13-2011; R093-13, 12-23-2013)

Section 10. NAC 445A.1432 is hereby amended to read as follows:

NAC 445A.1432 Humboldt Region: Designated beneficial uses. (NRS 445A.425, 445A.520) The designated beneficial uses for select bodies of water within the Humboldt Region are prescribed in this section:

						Bene	ficial Us	es					Aquati	Water
Water Body Name	Segment Description	-	-			Nonconta ct			Wildli fe	Aesthet ic	Enhan ce	Mars h	s of	Quality Standard NAC Referenc e
Humboldt River near Osino	From the upstream source of the main stem to Osino.	X	X	X	X	X	X	X	X				Warm -water fishery	445A.14
Humboldt River at Palisade	From Osino to the Palisade Gage.	X	X	X	X	X	X	X	X				Warm -water fishery	445A.14
Humboldt River at Battle Mountain	Gage to the Battle	X	X	X	X	X	X	X	X				Warm -water fishery	445A.14

						Bene	ficial Use	es					Aquati	Water
Water Body Name	Segment Description	Livesto ck	Irrigati on			Nonconta ct		Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life Specie s of	Quality Standard NAC Referenc e
Humboldt River at State Highway 789	From the Battle Mountain Gage to where State Highway 789 crosses the Humboldt River.	X	X	X	X	X	X	X	X				Warm -water fishery	445A.14
Humboldt River at Imlay	From where State Highway 789 crosses the Humboldt River to Imlay.	X	X	X	X	х	X	X	X				Warm -water fishery	445A.14
Humboldt River at Woolsey		X	X	X	X	X	X	X	X				Warm -water fishery	445A.14
Humboldt River at Rodgers Dam	From Woolsey to Rodgers Dam.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.14 52
Humboldt River at the Humboldt Sink	From Rodgers Dam to the Humboldt Sink.	X	X	X	X	X		X	X					<u>NAC</u> 445A.14 54
The Humboldt Sink	The entire sink.	X	X	X		X		X	X					NAC 445A.14 55
Humboldt River, North Fork and tributaries at the national forest boundary	From their origin in the Independen ce Mountain Range to the national forest boundary.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.14 56
Humboldt River, North Fork at Beaver Creek	From the national forest boundary to its confluence with Beaver Creek.	X	X	X	X	X	X	X	X				Trout	<u>NAC</u> 445A.14 <u>58</u>

						Bene	ficial Us	es					Aquati	Water
Water Body Name	Segment Description	Livesto ck	Irrigati on	Aquat ic	Conta ct	Nonconta ct	Municip al	Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life Specie s of	
Humboldt River, North Fork at the Humboldt River	Humboldt River.	X	X	X	X	Х	X	X	X					NAC 445A.14 62
Humboldt River, South Fork at South Fork Reservoir, including tributaries above Lee	above Lee, except for the length of the river and the lengths of its tributaries	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.14 64
South Fork Reservoir	The entire reservoir.	X	X	X	X	X	X	X	X				Trout	NAC 445A.14 65
Humboldt River, South Fork at the Humboldt River	From South Fork Reservoir to its confluence with the Humboldt River.	X	X	X	X	Х	Х	X	X				Trout	<u>NAC</u> 445A.14 66
Little Humboldt River	The entire length.	X	X	X	X	X	X	X	X					NAC 445A.14 68
Little Humboldt River, North Fork at the national forest boundary	From its origin to the national forest boundary.	X	X	X	X	X	X	X	X				Trout	<u>NAC</u> 445A.14 72

						Bene	ficial Us	es					Aquati	Water
Water Body Name	Segment Description	Livesto ck	Irrigati on	Aquat ic	Conta ct	Nonconta ct	Municip al	Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life Specie s of	
Little Humboldt River, North Fork at the South Fork of the Little Humboldt River	boundary to its confluence with the South Fork of the	X	X	Х	х	Х	х	Х	X					<u>NAC</u> 445A.14 74
Little Humboldt River, South Fork at the Elko- Humboldt county line	From its origin to the Elko- Humboldt county line.	X	X	X	X	X	X	X	X				Trout	<u>NAC</u> 445A.14 76
Little Humboldt River, South Fork at the North Fork of the Little Humboldt River	county line to its confluence with the North Fork of the	X	Х	Х	х	Х	х	Х	Х					<u>NAC</u> 445A.14 78
Marys River, upper	From its origin to the point where the river crosses the east line of T. 42 N., R. 59 E., M.D.B. & M.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.14 <u>82</u>
Marys River at the Humboldt River	From the east line of T. 42 N., R. 59 E., M.D.B. & M., to its confluence with the Humboldt River.	X	X	X	X	X	X	X	Х				Trout	<u>NAC</u> 445A.14 84

						Bene	ficial Us	es					Aquati	Water
Water Body Name	Segment Description	Livesto ck	Irrigati on	Aquat ic	Conta ct	Nonconta ct	Municip al	Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life Specie s of	
Tabor Creek	From its origin to the east line of T. 40 N., R. 60 E., M.D.B. & M.	X	X	Х	Х	Х	Х	X	X					<u>NAC</u> 445A.14 86
Maggie Creek Tributarie s	From their origin to the point where they become Maggie Creek or the point of their confluence with Maggie Creek.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.14 88
Maggie Creek at Jack Creek	From where it is formed by the Maggie Creek tributaries to its confluence with Jack Creek.	X	X	X	X	X	X	X	X				Trout	<u>NAC</u> 445A.14 92
Maggie Creek at Soap Creek	From its confluence with Jack Creek to its confluence with Soap Creek.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.14 94
Maggie Creek at the Humboldt River	From its confluence with Soap Creek to its confluence with the Humboldt River.	X	X	X	Х	Х	Х	X	Х					<u>NAC</u> 445A.14 96
Secret Creek at the national forest boundary	From its origin to the national forest boundary.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.14 98

						Bene	ficial Us	es					Aquati	Water
Water Body Name	Segment Description	Livesto ck	Irrigati on	Aquat ic	Conta ct	Nonconta ct	Municip al	Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life Specie s of	
Secret Creek at the Humboldt River	From the national forest boundary to its confluence with the Humboldt River.	X	X	X	X	X	X	X	X				Trout	NAC 445A.15 02
Lamoille Creek at the gaging station	of section 6, T. 32 N., R. 58 E., M.D.B. & M.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.15 04
Lamoille Creek at the Humboldt River	From gaging station number 10-316500, located in the NE 1/4 of section 6, T. 32 N., R. 58 E., M.D.B. & M., to its confluence with the Humboldt River.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.15 06
J.D. Ponds	The entire area.	X	X	X	X	X	X	X	X					NAC 445A.15 08
Denay Creek at Tonkin Reservoir	From its origin to Tonkin Reservoir.	X	X	X	X	X	X	X	X					NAC 445A.15 12
Tonkin Reservoir	The entire reservoir.	X	X	X	X	X	X	X	X					NAC 445A.15 14
Denay Creek below Tonkin Reservoir	Below Tonkin Reservoir.	X	Х	X	Х	X	X	Х	Х					NAC 445A.15 16

						Bene	ficial Use	es					Aquati	Water
Water Body Name		Livesto ck	Irrigati on			Nonconta ct		Industri al		Aesthet ic	Enhan ce	Mars h	c Life Specie s of	Quality Standard NAC Referenc e
Rock Creek at Willo W Creek [Squaw Valley Ranch]	From its origin to Willow Creek. [Squaw Valley Ranch].	X	X	X	X	X	X	X	X				Trout	<u>NAC</u> 445A.15 18
Rock Creek below Willo W Creek [Squaw Valley Ranch]	Below Willow Creek. [Squaw Valley Ranch.]	X	X	X	X	Х	X	X	X					NAC 445A.15 22
Willow Creek at Willow Creek Reservoir	From its origin to Willow Creek Reservoir.	X	X	Х	X	X	X	X	X				Trout	NAC 445A.15 24
Willow Creek Reservoir	The entire reservoir.	X	X	X	X	X	X	X	X				Trout	NAC 445A.15 26
North Antelope Creek	From its origin to its confluence with Antelope Creek.	Х		Х	Х	X		х	X					NAC 445A.15 27
Pole Creek	From its origin to the point of diversion of the Golconda water supply, near the north line of section 13, T. 35 N., R. 39 E., M.D.B. & M.	X	X	X	Х	X	х	X	Х				Trout	<u>NAC</u> 445A.15 28
Water Canyon Creek	From its origin to the point of diversion of the	X	X	X	X	X	X	X	X				Trout	NAC 445A.15 32

						Bene	ficial Use	es					Aquati	Water
Water Body Name	Segment Description	Livesto ck	Irrigati on	Aquat ic	Conta ct	Nonconta ct	Municip al	Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life Specie s of	Quality Standard NAC Referenc e
	Winnemuc ca municipal water supply, near the west line of section 12, T. 35 N., R. 38 E., M.D.B. & M.													
Martin Creek at the national forest boundary	From its origin to the national forest boundary.	X	X	X	X	X	X	X	X				Trout	<u>NAC</u> 445A.15 34
Martin Creek	From the national forest boundary to the first diversion in T. 42 N., R. 40 E., M.D.B. & M.	Х	X	X	X	Х	х	X	X				Trout	<u>NAC</u> 445A.15 36
Dutch John Creek	The entire length.	X	X	X	X	X	X	X	X				Trout	NAC 445A.15 38
Huntingto n Creek at the White Pine-Elko county line	origin to the White Pine-Elko county line.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.15 42
Huntingto n Creek at Smith Creek	county line to its confluence with Smith Creek.	X	X	Х	X	X	X	X	Х				Trout	<u>NAC</u> 445A.15 44
Huntingto n Creek at the South Fork of the Humboldt River	From its confluence with Smith Creek to its confluence with the South Fork of the	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.15 46

						Bene	ficial Us	es					Aquati	Water
Water Body Name	Segment Description	Livesto ck	Irrigati on	Aquat ic	Conta ct	Nonconta ct	Municip al	Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life Specie s of	Quality Standard NAC Referenc e
	Humboldt River.													
Green Mountain Creek at Toyn Creek	From its origin to its confluence with Toyn Creek.	X	X	X	X	Х	X	X	X					<u>NAC</u> 445A.15 48
Toyn Creek at Corral Creek	From its confluence with Green Mountain Creek to its confluence with Corral Creek.	X	X	X	X	X	X	X	X				Trout	<u>NAC</u> 445A.15 52
Toyn Creek at Green Mountain Creek	From its origin to its confluence with Green Mountain Creek.	X	X	X	X	X	X	X	X					<u>NAC</u> 445A.15 54
Reese River at Indian Creek	From its origin to its confluence with Indian Creek, except for the length of the river within the exterior borders of the Yomba Indian Reservatio n.	X	X	X	X	X	X	X	X				Trout	<u>NAC</u> 445A.15 56
Reese River at State Route 722	From its confluence with Indian Creek to State Route 722 (old U.S. Highway 50), except for the length of the river within the exterior borders of the Yomba Indian	X	X	X	Х	Х	х	X	Х				Trout	<u>NAC</u> 445A.15 58

						Bene	ficial Us	es					Aquati	Water
Water Body Name	Segment Description	Livesto ck	Irrigati on	Aquat ic	Conta ct	Nonconta ct	Municip al	Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	c Life Specie s of	
	Reservatio n.													
Reese River below State Route 722	North of State Route 722 (old U.S. Highway 50).	X	X	X	X	X	X	X	X					NAC 445A.15 62
San Juan Creek	From its origin to the national forest boundary.	X	X	Х	X	X	X	X	X				Trout	NAC 445A.15 64
Big Creek at the forest service campgrou nd	From its origin to the east	X	Х	Х	х	Х	х	Х	Х				Trout	<u>NAC</u> 445A.15 66
Big Creek below the forest service campgrou nd	From the east boundary of the United States Forest Service's Big Creek Campgrou nd to the first diversion dam, near the west line of section 4, T. 17 N., R. 43 E., M.D.B. & M.	X	X	X	х	X	Х	X	Х				Trout	<u>NAC</u> 445A.15 68
Mill Creek	From its origin to the first point of diversion, near the south line of section	Х	X	Х	Х	Х	Х	X	X				Trout	<u>NAC</u> 445A.15 72

						Bene	ficial Use	es					Aquati	Water
Water Body Name	Segment Description		Irrigati on			Nonconta ct		Industri al		Aesthet ic	Enhan ce	Mars h	c Life Specie s of	
	22, T. 29 N., R. 44 E., M.D.B. & M.													
Lewis Creek	From its origin to the first point of diversion, near the center of section 23, T. 30 N., R. 45 E., M.D.B. & M.	X	X	X	X	X	X	X	X				Trout	<u>NAC</u> 445A.15 74
Iowa Canyon Reservoir	The entire reservoir.	X	X	X	X	X	X	X	X				Trout	NAC 445A.15 76
Starr Creek	From the confluence of Ackler and Herder Creeks to its confluence with the Humboldt River.	х	х	X	X	х	х	Х	х				Trout	NAC 445A.15 78
	I						•							
	Irrigation Watering of	livestocl	r											
	Recreation i			with th	e water	-								
	Recreation r													
Industrial	Industrial su	pply												
	Municipal o			y, or bo	th									
	Propagation													
	Propagation													
Aesthetic	Waters of ex				r aesth	etic value								
Enhance	Enhancemer													
Marsh	Maintenance	e of a fre	shwater	marsh										

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R129-10, 1-13-2011; R130-12, 12-20-2012; R102-14, 10-24-2014; R103-14, 12-22-2014; R130-15, 4-4-2016; R109-16, 12-19-2017)

Section 11. NAC 445A.1882 is hereby amended to read as follows:

NAC 445A.1882 Walker Region: Designated beneficial uses. (NRS 445A.425, 445A.520) The designated beneficial uses for select bodies of water within the Walker Region are prescribed in this section:

						Bene	ficial Us	es						Water
Water Body Name	Segment Description	Livesto ck		Aquat ic		Noncont act		Industri al		Aesthet ic	Enhan ce	Mars h	Aquatic Life Species of Concern	Quality Standard NAC Referenc e
Walker River, West Fork at the state line	At the California- Nevada state line.	X	X	Х	Х	X	Х	X	Х				Mountai n whitefis h, rainbow trout and brown trout	<u>NAC</u> 445A.18 86
Topaz Lake	At various points in Topaz Lake.	X	X	X	X	X	X	X	X				Rainbow trout, cutthroat trout, brown trout, kokanee salmon and silver salmon	NAC 445A.18 88
Walker River, West Fork near Wellingto	state line to	X	X	Х	X	Х	Х	X	Х				Mountai n whitefis h, rainbow trout and brown trout	NAC 445A.18 92
West Fork at the East Fork at the Walker	Near Wellington to its confluence with the East Fork of the Walker River near Nordyke Road.	X	Х	X	X	X	Х	X	X				Brown trout and rainbow trout	NAC 445A.18 94
	From the California- Nevada state line to its confluence with the East Fork of the Walker River.	X	X	X	X	X	X	X	X				Mountai n whitefis h, brown trout, brook trout and rainbow trout	445A.18 96

						Bene	ficial Us	es					Water
Water Body Name		Livesto ck				Noncont act	Munici pal			Aesthet ic	Mars h	Aquatic Life Species of Concern	Quality Standard NAC Referenc e
Walker River, East Fork at the state line	At the California- Nevada state line.	X	X	X	X	X	X	X	Х			Mountai n whitefis h, rainbow trout and brown trout	NAC 445A.18 98
Walker River, East Fork at Bridge B-1475	From the California- Nevada state line to Bridge B- 1475.	X	X	X	X	X	X	X	X			Mountai n whitefis h, rainbow trout and brown trout	NAC 445A.19 02
Walker River, East Fork at the West Fork of the Walker River	From Bridge B- 1475 to its confluence with the West Fork of the Walker River near Nordyke Road.	Х	Х	X	X	X	X	Х	X			Brown trout and rainbow trout	NAC 445A.19 04
Walker River at the Walker River Indian Reservati	From the confluence of the East Fork of the Walker River and the West Fork of the Walker River to the exterior border of the Walker River Indian Reservation.	X	X	X	X	X	X	X	X			uth bass	NAC 445A.19 06
Walker River at Walker Lake	From the exterior border of the Walker River Indian Reservation to Walker Lake.	X	X	X	X	X	X	X	X			Channel catfish, largemo uth bass and, from February through June when an adequate flow	NAC 445A.19 08

						Bene	ficial Us	es					Water
Water Body Name		Livesto ck				Noncont act				Aesthet ic	Mars h	Aquatic Life Species of Concern	Quality Standard NAC Referenc e
												exists, adult Lahonta n cutthroat trout and adult rainbow trout	
Walker Lake	The entire lake.			X	X	X			X			Tui chub, Tahoe sucker, and adult and juvenile Lahonta n cutthroat trout	445A.19 14
Desert Creek	From the California- Nevada state line to its confluence with the West Fork of the Walker River.	X	X	X	X	X	X	X	X			Brown trout, brook trout and rainbow trout	NAC 445A.19 16
Mason Valley Wildlife Managem ent Area - Bass, Crappie and North Ponds and Hinkson Slough	Hinkson Slough, Bass Pond, Crappie Pond and North Pond.	X	X	X	X	X	X	X	X			Trout	NAC 445A.19 18
Mason Valley Wildlife Managem ent Area	All surface water impoundme nts, excluding Hinkson Slough, Bass Pond, Crappie Pond and North Pond.	X	X	X	X	X	X	X	X				<u>NAC</u> 445A.19 22

						Bene	ficial Us	es						Water
Water Body Name	Segment Description	Livesto ck	Irrigati on	Aquat ic	Conta ct	Noncont act	Munici pal	Industri al	Wildli fe	Aesthet ic	Enhan ce	Mars h	Aquatic Life Species of Concern	Quality Standard NAC Referenc e
Cottonwo od Creek	From its origin to the point of diversion of the Hawthorne Naval Ammunitio n Depot, near the north line of section 34, T. 9 N., R. 28 E., M.D.B. & M.	X	X	X	X	X	X		X					<u>NAC</u> 445A.19 26
Mud Spring Creek ^{[Squaw} Creek]	From its origin to the point of diversion of the Hawthorne Naval Ammunition Depot, near the north line of section 33, T. 9 N., R. 29 E., M.D.B. & M.	X	х	х	х	х	X		х					<u>NAC</u> 445A.19 28
Rose Creek	From its origin to the point of diversion of the Hawthorne Naval Ammunition Depot, near the north line of section 4, T. 8 N., R. 29 E., M.D.B. & M.	X	X	х	х	Х	X		х					<u>NAC</u> 445A.19 <u>32</u>
Corey Creek	From its origin to the point of diversion of the town of Hawthorne, near the		X	X	X	X	X		X					<u>NAC</u> 445A.19 <u>34</u>

						Bene	ficial Us	es					Water
Water Body Name	I Describtion		_	_		Noncont act	Munici pal			Enhan ce	Mars h	Aquatic Life Species of Concern	Quality Standard NAC Referenc e
	west line of section 3, T. 7 N., R. 29 E., M.D.B. & M.												
Irrigation	Irrigation												
		livestock	-										
Contact	Recreation in			with th	e wate	r							
Nonconta ct	Recreation n												
	Industrial sup												
Municipal	Municipal or			, or bo	th								
Wildlife	Propagation												
Aquatic	Propagation												
Aesthetic	Waters of ex				r aesth	etic value	;						
Enhance	Enhancemen												
Marsh	Maintenance	of a fres	shwater	marsh									

(Added to NAC by Environmental Comm'n by R160-06, eff. 8-26-2008; A by R093-13, 12-23-2013)